Immune system Key

Nerofe[™]: A novel Human Peptide Hormone for Treatment of Cancer (Phase 1 results)

Nerofe Compound Highlights

Description

- Novel human peptide hormone (84AA, API 14AA)
- Novel mechanism of action
- FDA orphan drug status
- Low cost of production
- Excellent safety profile.
- Relatively high half-life (more than 4h in human)
- Phase 1 ongoing

Activities

- Nerofe affects cancer cells:
 Directly through T1/ST2 receptor which is overexpressed in those cells.
- Indirectly through endothelial cells by regulating angiogenesis
- Indirectly through immune cells by regulating cytokine secretion.
- Nerofe is therefore effective in treatment for cancer.

Triple action in cancer treatment

- Cytotoxic for cancer and inflamed cells.
- Modulates immune system response.
- Inhibits angiogenesis through inhibition of secretion of major pro-angiogenic cytokines.

Fig 1: Nerofe's Triple Action in Cancer Treatment

Pre-Clinical results

Breast Cancer

Balb/C females were inoculated with 4 million EMT6 cells (mammary gland carcinoma) SC. The mice were then treated with Nerofe while a control group was treated with Saline.

The tumor size was periodically measured every three days as described in fig 2.

Fig 2: Nerofe's effect on Tumor growth in Balb/C mice injected S.C. with EMT6 murine carcinoma cells

Phase 1 Clinical Trial status

Background

This apoptosis factor (NEROFE[™]) is a 14-a.a. modified form of a hormone-like peptide present in the human thymus, which plays a key role in immune system regulation. Nerofe is acting through novel MOA mediated by T1/ST2 receptor.

Methods

This ongoing, single-center, first-in-human, 3+3 dose-escalation study of this factor given I.V. at 6 mg/m²-96 mg/m² over 5 3-pt cohorts (3 times a week; 28-day cycle) examines the MTD, safety, PK profile, and anti-tumor activity in patients with advanced solid tumors. Patients undergo tumor assessments every other cycle. Samples for PK are taken on days 1 of cycles 1 and 2.

Results

To date, 15 patients with advanced/metastatic solid tumors have been enrolled (3+3 protocol).

Toxicity:

MTD has not been reached. Treatment was well-tolerated with no cumulative toxicity.

- Pharmacokinetic analysis: AUC, Cmax and t_{1/2} were calculated and were dosedependent and approximately linear.
- Efficacy:

5 of 15 evaluable patients have been treated for at least 3 cycles and were considered SD through this period.

One patient suffering from spinal cord neoplasia (treated for +11M) was walking with the use of a treadmill when entering the trial, because of the tumor pressing on her spinal cord. Halfway in treatment was walking freely again. A biopsy taken from her prior treatment shown 30% dividing cells (KI67 positive), following treatment only 10% dividing cells were present. Scar tissue and bleeding were observed in that biopsy – suggesting an antiangiogenesis process took place.

• Mode of Action (MOA)

◦ <u>Strong anti-angiogenic effect</u>

Nerofe administration was associated with **orders of magnitude** decreases in plasma levels of Angiopoeitin-1, PDGF AA, TGF- β 1 and VEGF in **all** patients in cohorts 3 and 4. This effect wasn't observed on the same extent on the lower treatment dosage, suggesting a Nerofe dosage dependent induction of anti-angiogenesis.

Percent change in serum level of angiogenesis factor during treatment												
	Angiopoeitin-1	FGF acidic	FGF Basic	PDGF-AA	PDGF-BB	VEGF-D	TGF-β1	VEGF				
Cohort 1	906%	1201%	195%	1379%	2271%	265%	18%	117%				
Cohort 2	2↓ -90%	2↓ -62%	2↓ -74%	2↓ -92%	2↓ -95%	1↓ -47%	2 ↓ -80%	2 ↓ -40%				
Cohort 3	2↓ -77%	3↓ -26%	2 ↓ -34%	2↓ -79%	2↓ -82%	3↓ -62%	2↓ -59%	3↓ -54%				
Cohort 4	3↓ -50%	2 ↓ -27%	<mark>2↓ -13%</mark>	3↓ -73%	-78%	<mark>2↓ -72%</mark>	2 ↓ -20%	2 ↓ -63%				

↑/↓: number of patients in which levels raised/dropped following treatment

Fig 3: percent change of serum angiogensis factors during treatment

◦ Strong anti-proliferative effect

In 3 patients with elevated serum EGF levels, levels decreased normal values.

o Immuno-modulatory effect

In Cohorts 3 and 4 major pro-inflammatory cytokines serum levels increased significantly, an effect not seen on the lower treatment dosages, suggesting a Nerofe dosage dependent induction immune system response to the tumor.

	GM-CSF (20)	L-12p70 (33	IL-2 (48)	IL-21 (52)	TNF-a (75)
Cohort 1	2173%	469%		-100%	4%
Cohort 2	-97%	-76%	-100%	-61%	-5%
Cohort 3	11%	83%		84%	31%
Cohort 4	5613%	477%	242%	1326%	74%

Fig 4: percent change of serum cytokines during treatment

<u>Selective biomarker for efficacy</u>

Patients whose tumor were positively stained for T1/ST2 receptor stayed in trial with SD significantly longer than patients who had a tumor that was negatively stained.

Fig 5: Time of SD is related to T1/ST2 tumor staining

Conclusions

Nerofe administered at doses up to 96 mg/m² is safe, well-tolerated and demonstrates interesting anti-angiogenic activity in combination with increased immune cytokines. Tumor T1/ST2 expression may be a biomarker for sensitivity to Nerofe. Dose-escalation continues in this trial.

Patents

Strong IP protection:

- 1. One NCE patent granted in USA and other countries.
- 2. One patent for anti-angiogenic and anti-metastatic activity of Nerofe.
- 3. One patent for active derivatives of Nerofe.

Contacts

Dr. Yoram Devary, CTO, Immune System Key ydevary@immunesk.com +972 502 597032 www.ImmuneSK.com